

Sixth Semester B.E. Degree Examination, June/July 2013

Digital Communication

Time: 3 hrs.
Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain the sampling theorem for low pass signals and derive the interpolation formula.
(09 Marks)
b. With a neat block diagram, explain the scheme for signal reconstruction for practical sampling.
(06 Marks)
c. Let E denote the energy of a strictly band limited signal $\mathrm{g}(\mathrm{t})$. Show that E may be expressed interms of the sample values of $g(t)$, taken at the Nyquist rate as, $E=\frac{1}{2 w} \sum_{n=-\infty}^{\infty}\left|g\left(\frac{n}{2 w}\right)\right|^{2}$ where w is the highest frequency component of $\mathrm{g}(\mathrm{t})$.
(05 Marks)
2 a. Derive the expression for signal to quantization noise ratio (SNR) and show that for uniform quantization, each bit in the codeword of a PCM contributes 6 dB to SNR.
(08 Marks)
b. Six independent message sources of bandwidths $w, w, 2 w, 2 w, 3 w$ and $3 w$ hertz are to be transmitted on TDM. Set up a scheme to accomplish this requirement, with each message signal sampled at its Nyquist rate.
(05 Marks)
c. The signal $\mathrm{m}(\mathrm{t})=6 \sin (2 \pi \mathrm{t})$ Volts, is transmitted using 4-bit binary PCM system. The quantizer is of midriser type with a step size of 1 Volt. The sampling frequency is 4 Hz with samples taken at $\mathrm{t}= \pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{5}{8}, \ldots$ sec. Sketch the PCM wave for one complete cycle of the input.
(07 Marks)
3 a. With a neat block diagram, explain the delta modulation system and illustrate its quantization error.
(08 Marks)
b. Derive the expression for power spectral density of NRZ bipolar format.
(07 Marks)
c. Explain T_{1} carrier system with its compounding characteristics.

4 a. Explain the Nyquist criterion for distortionless baseband binary transmission and obtain the ideal solution for zero ISI.
(08 Marks)
b. For a binary sequence 10110001 , construct (i) RZ polar format, (ii) Manchester format.
(04 Marks)
c. The binary data 011100101 is applied to the input of a modified duobinary system.
i) Construct the modified duobinary coder output and receiver output with a precoder.
ii) Due to transmission error, the level produced by the third digit is zero, construct the new receiver output.
(08 Marks)

PART - B

5 a. Obtain the expression for probability of symbol error of coherent binary FSK.
(09 Marks)
b. Compare the probability of symbol errors for basic digital modulation formats and explain how the probability of error depends on the distance between the message points in signal space diagram.
(04 Marks)
c. With a neat block diagram, explain the differential phase shift keying. Illustrate the generation of differentially encoded sequence for the binary data 1100100010 .
(07 Marks)

6 a. With the conceptualized model of a digital communication system, explain the GramSchmidt orthogonalization procedure.
(10 Marks)
b. Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals $s_{1}(t), s_{2}(t)$ and $s_{3}(t)$ shown in Fig.Q6(b). Express each of these signals in terms of the set of basis functions.
(10 Marks)

Fig.Q6(b)

7 a. Explain the maximum likelihood detection process and obtain the decision rule. ($\mathbf{1 0}$ Marks)
b. Derive the impulse response of a matched filter receiver and explain any two properties of matched filter.
(10 Marks)
8 a. Explain frequency hoop spread m-ary frequency shift keying with a neat block diagram and illustrate the slow frequency hopping.
(08 Marks)
b. Find the output sequence of the shift register shown in Fig.Q8(b). The initial state of the register is 1000 . Demonstrate the balance property and run property of a PN sequence. Calculate and plot the autocorrelation function of the PN sequence.
(07 Marks)

c. In a DS/BPSK system, the feedback shift register used to generate the PN sequence has length $m=19$. The system is required to have a probability of error due to externally generated interfering signals that doesn't excess 10^{-5}. Calculate the processing gain and antijam margin in decibels. Use $\operatorname{erf}(3)=0.99998$.
(05 Marks)

10EC/TE62

Sixth Semester B.E. Degree Examination, June/July 2013
 Microprocessors

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A
1 a. With a neat diagram, explain the CPU architecture of 8086 .
(08 Marks)
b. Define any four addressing modes used in 8086 microprocessor. Identify addressing modes used in each of the following 8086 instructions:
i) $\mathrm{MOV} \mathrm{BX}, 0354 \mathrm{H}$
ii) ADD AL, $[\mathrm{BX}+04]$
iii) MOV AX, [BX + SI]
iv) $\mathrm{MOV} \mathrm{AX},[\mathrm{BX}+\mathrm{SI}+04]$
(08 Marks)
c. If $\mathrm{DS}=\mathrm{AB} 40 \mathrm{H}, \mathrm{CS}=9960 \mathrm{H}, \mathrm{SS}=3 \mathrm{~B} 00 \mathrm{H}, \mathrm{BP}=7 \mathrm{E} 74 \mathrm{H}, \mathrm{SP}=0135 \mathrm{H}, \mathrm{SI}=1245 \mathrm{H}$, $\mathrm{DI}=4356 \mathrm{H}$, then determine physical address of the following instructions:
i) $\mathrm{MOV}[\mathrm{BP}+\mathrm{DI}+6], \mathrm{AH}$
ii) $\mathrm{ADD} \mathrm{AL},[5036 \mathrm{H}]$
(04 Marks)
2 a. What do you mean by segment override prefix? Give an example.
(04 Marks)
b. Explain the role of AAD and AAM instruction of 8086 microprocessor with an example.
(06 Marks)
c. Write an assembly level language program to sort the numbers in ascending order using Bubble sorting technique. The program should be written using assembler Directives.
(10 Marks)
3 a. What are Assembler Directives? Explain the following directives with an example for each:
i) ASSUME
ii) PUBLIC and EXTRN
iii) GLOBAL
iv) ALIGN16
(09 Marks)
b. Write an ALP to search a given character in the array of characters using string instructions. What is the role of SI, DI registers and DF bit?
(05 Marks)
c. Write an ALP to read a string from the keyboard and display the reversed string on the monitor screen.
(06 Marks)
4 a. Define interrupts. Explain TYPE0, TYPE1, TYPE2, TYPE3 and TYPE4 interrupts.(06 Marks)
b. Explain hardware interrupts of 8086 microprocessor.
(04 Marks)
c. Differentiate macros and procedures.
(04 Marks)
d. Write a macro to read a character without echo and to read a string of characters from the keyboard.
(06 Marks)

PART - B

5 a. Define Stepper motor. Explain the interfacing of a stepper motor to 8086 microprocessor with necessary circuit diagram. Write an ALP to rotate the stepper motor clockwise by n steps and anticlockwise by m steps.
(10 Marks)
b. Interface 4×4 keyboard to 8086 microprocessor using 8255 . Write the necessary circuit diagram and an ALP.
(10 Marks)

6 a. What are the functions of following 8087 instructions? Explain.
i) FCOMP
ii) FENI
iii) FDECSTP
iv) FSTENV
v) FYL2XP1
(10 Marks)
b. Write a program using 8087 instructions to compute the volume of the sphere using MASM syntax.
c. Explain the control register format of 8087 .

7 a. With a neat diagram, explain the maximum mode operation of 8086.
(08 Marks)
b. What are the characteristics of PCI and USB interface?
(06 Marks)
c. Interface Printer 8086 processor with relevant signals of importance. Explain using a flowchart.

8 Write short notes for the following:
a. 80386 special registers
b. Salient features of 80486 processor
c. Pentium CPU architecture
\square 10EC63

Sixth Semester B.E. Degree Examination, June/July 2013 Microelectronic Circuits

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least THREE from Part A and TWO from Part B.

PART - A

1 a. Derive the equation for finite output resistance of a MOSFET.
(08 Marks)
b. For the CS-amplifier shown in Fig.Q.1(b), find $R_{i n}, A v_{0}, R_{\text {out }}$ and $G v$ with r_{0} taken into account. If $V_{\text {sig }}$ is a $0.4 \mathrm{~V}(\mathrm{P}-\mathrm{P})$ what output signal results? Assume $\mathrm{R}_{\text {sig }}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega$, $\mathrm{g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{v}$ and $\mathrm{r}_{0}=150 \mathrm{~K} \Omega$.
(08 Marks)

Fig.Q.1(b)
c. What is threshold voltage and mention its range?
(04 Marks)
2 a. Draw the development of the T-equivalent circuit model for the MOSFET.
(05 Marks)
b. Derive the voltage gain and overall voltage equations of a source follower using MOSFET.
(08 Marks)
c. Design the circuit shown in Fig.Q.2(c) so that the transistor operates at $\mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V}$. The NMOS transistor has $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~L}=1 \mu \mathrm{~m}$ and $\mathrm{W}=32 \mu \mathrm{~m}$. Neglect the channel length modulation effect.
(07 Marks)

3 a. What is MOSFET scaling? Mention the benefits of scaling.
(06 Marks)
b. Draw the MOSFET constant current source circuit and explain it.
(06 Marks)
c. Explain the operation of a MOS current steering circuit and mention it advantage. (08 Marks)

4 a. What is cascade amplifier? Explain the operation of a MOS cascade amplifier. (07 Marks)
b. Draw the high frequency-equivalent circuit model of the MOSFET common source amplifier and explain the significance of each element.
(07 Marks)
c. Draw the three different transistor pairings and explain each configuration.
(06 Marks)

5 a. Explain the operation of MOS differential pair with a differential input voltage. (07 Marks)
b. Draw the circuit diagram of a active-loaded MOS differential pair and explain it. (08 Marks)
c. What are the features of two-stage CMOS op-amp configuration?
(05 Marks)

PART - B

6 a. Explain the effect of feedback on the amplifier poles.
(06 Marks)
b. What are the properties of negative feedbacks? Explain in detail.
(08 Marks)
c. Draw the ideal structure for the series-series feedback amplifier and explain it.
(06 Marks)
7 a. Explain how to minimize the temperature effect in a logarithmic amplifier.
(08 Marks)
b. Draw the sample and hold circuit using op-amp and explain it.
c. Design a non-inverting op-amp with a gain of 2 . At the maximum output voltage of 10 V and the current in the voltage divider is to be $10 \mu \mathrm{~A}$.
(05 Marks)
8 a. What are the reasons for choosing CMOS over bipolar technology in digital applications?
b. Explain the dynamic operation of a CMOS inverter.
c. Implement $\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}}$ using the AOI gate.

Sixth Semester B.E. Degree Examination, June/July 2013
 Antennas and Propagation

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.
 PART - A

1 a. Define the following terms with respect to antenna:
i) Directivity
ii) Beam solid angle
iii) Radiation resistance
(09 Marks)
b. State and prove Frii's transmission formula.
(05 Marks)
c. Show that maximum effective aperture of short dipole is $0.119 \lambda^{2}$.
(06 Marks)
2 a. State and prove power theorem and its application.
(05 Marks)
b. Show that the directivity for unidirectional operation is $2(n+1)$ for an intensity variation of $\mathrm{U}=\mathrm{U}_{\mathrm{m}} \cos ^{\mathrm{n}} \theta$.
(05 Marks)
c. Derive an expression and draw the field pattern for isotropic point sources of the same amplitude and same phase.
(10 Marks)
3 a. Starting from electric and magnetic potentials, obtain the far field components for a short dipole.
(12 Marks)
b. Derive an expression for radiation resistance of a short electric dipole.
(08 Marks)
4 a. Derive an expression for far field components of a loop antenna.
(10 Marks)
b. The radius of a circular loop antenna is 0.02λ. How many turns of the antenna will give a radiation resistance of 35Ω.
(05 Marks)
c. Write a note on slot antenna.
(05 Marks)

PART - B

5 a. Explain the features of an helical antenna and the practical design considerations of the helical antenna.
(10 Marks)
b. Write note on: i) Ultra wide band antenna, ii) Lens antenna.
(10 Marks)
6 a. Explain: i) Yagi-Uda antenna, ii) Parabolic reflectors.
(10 Marks)
b. Write short notes on:
i) Turnstile antenna \quad ii) Antennas for ground penetrating radar.
(10 Marks)
7. a. Discuss the propagation characteristics of radio waves for different frequencies.
(10 Marks)
b. Explain the principle of surface wave propagation. Obtain an equation for tilt angle α of the wave.
(10 Marks)
8 a. Draw and explain different ionized layers an ionospheric propagation.
(10 Marks)
b. A distance of 1500 km one is to be covered along earth surface using a communication link of the reflection region of ionosphere has $f_{c} 6 \mathrm{MHz}$ and $f_{\text {MUF }} 7.5 \mathrm{MHz}$, calculate the height of the region.
(05 Marks)
c. Write a note on skip distance.
(05 Marks)

10EC65

Sixth Semester B.E. Degree Examination, June/July 2013 Operating Systems

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What are the two goals of an operating system (OS)? Explain briefly.
(04 Marks)
b. Describe the batch processing system and functions of scheduling and memory management for the same.
(08 Marks)
c. Why I/O bound programs should be given higher priorities in a multiprogramming environment? Illustrate with timing diagram.
(08 Marks)
2 a. Explain system generation operations.
(04 Marks)
b. Compare Kernel based and microkernel based OS function.
(08 Marks)
c. Explain layered OS structure. How is it superior compared to monolithic structure?
(08 Marks)
3 a. Mention the three kinds of entities used for concurrency within a process in threads in Solaris, along with a diagram.
(04 Marks)
b. With a state transition diagram and PCB structure, explain the function of the states, state transitions and the functions of a schedule.
(08 Marks)
c. Explain the race condition in airline reservation system with an algorithm.
(08 Marks)
4 a. Compare static and dynamic memory allocation. What are the four program components for which the memory is to be allocated?
(04 Marks)
b. Describe: i) Best fit technique for free space allocation and ii) Variable partitioned allocation with their merits and demerits. (08 Marks)
c. Describe buddy system allocator for program controlled data. How does it differ from process-of-two allocator?
(08 Marks)

PART - B

5 a. Explain "page out daemon" for handling virtual memory in UNIX OS.
(04 Marks)
b. Describe the address translation using ATU and TLB in demand paged allocation with a block diagram.
(08 Marks)
c. Determine the number of page faults in FIFO and LRU policies for the following page reference string. Pages: $5,4,3,2,1,4,3,5,4,3,2,1$. Assume that there are 3 page frames and all are initially empty and the first page loaded causes a page fault. Also compare these two techniques.
(08 Marks)
6 a. Compare sequential and direct file organization.
(04 Marks)
b. Describe the interface between file system and IOCS.
(08 Marks)
c. Explain the file system actions when a file is opened and a file is closed.
(08 Marks)

7 a. What are the functions of medium and short term schedulers?
(04 Marks)
b. Determine mean turn around time for SJN an RR scheduling, assuming a time slice of 1 second for the following table:

Process	Arrival time in seconds	Execution time in seconds	Deadline in seconds
P_{1}	0	3	4
P_{2}	2	3	14
P_{3}	3	2	6
P_{4}	5	5	11
P_{5}	8	3	12

(08 Marks)
Describe the various blocks in a long term scheduling with JCB structure.

8 a. Explain the primitives used for the transmission and reception of messages in an OS.
b. Describe message delivery protocols and the exceptional conditions during message delivery with an example.
c. Explain the interprocess communication mechanisms in UNIX OS.
\square

Sixth Semester B.E. Degree Examination, June/July 2013 Satellite Communication

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What is satellite communication? List some of the services provided by satellite communication.
(06 Marks)
b. Explain frequency allocations for a satellite services. (04 Marks)
c. State and explain the Kepler's law of planetary motion with neat diagrams and necessary equations.
(10 Marks)
2 a. Define and explain the following terms applied to satellites in orbit:
i) Apogee and perigee points.
ii) Ascending and descending nodes.
iii) Prograde and retrograde orbits.
(10 Marks)
b. An earth orbsting satellite, has an eccentricity of 0.15 and semimajor axis of 9000 kms . Determine: i) Apogee height; ii) Perigee height; iii) Its periodic time.
Given $\mu=3.986 \times 10^{5} \mathrm{~km}^{3} / \mathrm{S}^{2}$ and assume a mean value of 6371 kms for earth's radius.
(06 Marks)
c. What are look angles? How they are determined?
(04 Marks)
3 a. Explain atmospheric and ionospheric losses in satellite communication.
(06 Marks)
b. A receiver operating at 2800 MHz is shown in block diagram form in Fig.Q.3(b). Calculate its $(\mathrm{G} / \mathrm{T})$ ratio in dB / K referred to the output port of the antenna.
(08 Marks)

Fig.Q.3(b)
c. Calculate rain attenuation for a frequency of 12 GHz for circular polarization. The rain rate of $10 \mathrm{~mm} / \mathrm{h}$ is exceeded for 0.01 percent of the year. The earth station attitude is 600 meters, and an antenna elevation angle is 50°. The rain height is 3 kms . $\left[\mathrm{ah}=0.0188, \mathrm{~b}_{\mathrm{h}}=1.217\right.$, $\left.\mathrm{a}_{\mathrm{v}}=0.168, \mathrm{~b}_{\mathrm{v}}=1.2\right]$.
(06 Marks)
4 a. Explain the functions of the following satellite subsystems:
i) Transponder.
ii) Power system.
iii) Wide band receiver.
iv) Telemetry, tracking and command system.
(08 Marks)
b. What is meant by satellite altitude? With the help of neat diagram, explain two types of altitude control.
(12 Marks)

PART - B

5 a. With the help of block diagram, explain the working of master antenna TV system. Compare CATV and MATV system.
(10 Marks)
b. With the aid of a block diagram, explain the indoor and outdoor units of a receive only home TV system.
(10 Marks)
6 a. Explain the concepts of TDMA and FDMA using appropriate figures. Discuss the relative advantages and disadvantages of each.
(10 Marks)
b. The carrier-to-interference ratio at the ground receiving antenna is 23.3 dB . For the uplink $[\mathrm{C} / \mathrm{I}]$ ratio is 27.53 dB . Find the overall ratio $[\mathrm{C} / \mathrm{I}]_{\text {ant }}$ for $(\mathrm{I} / \mathrm{C})_{\mathrm{U}}=0.001766$ and $(\mathrm{I} / \mathrm{C})_{\mathrm{D}}=0.004436$.
c. What are the different interferences that occur in FDMA system?

7 a. Explain in brief different types of satellite mobile services.
b. Explain the following:
i) Transponder capacity.
ii) Frequency and polarization.
iii) Bit-rate and digital TV.
(10 Marks)
8 Write notes on:
a. GPS and its uses.
b. Iridium.
c. Antenna look angles.
d. VSAT and its applications.

